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Abstract. We obtain the current transmission amplitudes as a function of Fermi 
energy for electrons scattering from a defect in a quai-one-dimensional wire by solv- 
ing Dyson’s equation for the single-electron Green function. Dyson’s equation in a 
confined geometry includes both mode conversion and coupling to all the evanescent 
modes in the wire. After obtaining the Green functions, we use Fisher and Lee’s re- 
lationship between the singlselectron Green functions and the current transmission 
amplitudes through the defect to find all the intersubband and intrasubband trans- 
mission probabilities. In agreement with a previous calculation of the transmission 
amplitudes performed by simply matching wavefunctions at the defect boundary, 
evanescent modes are shown to dominate the scattering properties whenever the 
Fermi energy approaches either a new confinement subband or a quasi-bound state 
splitting off from the higher-lying confinement subbands. 

1. Introduction 

Electron scattering in a confined geometry is qualitatively different from scattering 
in an open geometry due to the existence of evanescent modes introduced by the 
confinement [l]. Figure 1 shows a case where only the lowest normal mode is incident 
on a defect in a wire. In figure 1 the second and higher normal modes are evanescent 
waves which decay along the x direction of propagation. The scattering defect couples 
propagating modes in the wire both to  each other and to all the evanescent modes 
through the scattering boundary conditions. Therefore, €or a steady current flow 
incident on a defect in the wire, a localised mode will build up around the defect even 
if the scatterer is repulsive. These extra stored electrons cannot collect around a single 
defect in an open geometry where the electrons must scatter into a travelling wave 
which propagates away from the defect. 

In this paper we consider the scattering from a single delta function defect in a 
quasi-one-dimensional wire. Dyson’s equation for the single-electron Green function 
is exactly soluble for this special potential. Mode conversion as well as scattering into 
all the evanescent modes from each higher-lying confinement subband are included in 
the Dyson equation describing scattering in a confined geometry. We have already 
examined this problem using a simpler method of matching wavefunctions and their 
derivatives at the defect [l]. Here we show that the same transmission and reflection 
coefficients result from the solution of Dyson’s equation. Some additional insight can 
be gained into the resulting unusual scattering properties [l-41 by considering the class 
of scattering diagrams which dominate our solution of Dyson’s equation. 
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Figure 1. A single scattering defect in a quasi-one-dimensional wire. The wire is 
assumed to be infinitely long on either side of the defect. For carriers incident only in 
the lowest subband as shown, evanescent waves build up on either side of the defect 
in the second and higher normal modes. The building up and storage of electrons 
around a single scatterer is a unique feature of scattering in a confined geometry such 
as a wire. 
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Figure 2. Two-probe Landauer conductance vesus electron Fermi energy through 
a repulsive delta function defect (full curve) and an attractive delta function defect 
(chain curve) in a quasi-1D wire. A point of ‘perfect transparency’, where the con- 
ductance is equal to its ballistic value of (n  - 1) times 2 e 2 / h ,  appears immediately 
below the nth subband minima. The extra drops in the conductance through the 
attractive potential correspond to extra quasi-bound states in the wire which have 
split off from the confinement subbands. 

The paradigm for calculating conductivity in phase coherent structures has shifted 
almost exclusively to the viewpoint of Landauer and the various Landauer conductance 
formulae [5]. Derivations of these conductance formulae from linear response theory 
have been criticised by Landauer [6] for failure to include the necessary adiabatic 
widening from a narrow to a wide region. These criticisms can be further appreciated 
by comparing the electrostatic and electrochemical potentials for a geometry with 
and without a constriction, given in figure 1 and figure 2 of [7], to  the geometries 
without a constriction considered in [8-lo]. For the geometries considered in [&lo] 
it is difficult to understand how the necessary electrostatic potential drop associated 
with the quantum contact resistance can develop, for at what point in space can the 
electrostatic potential V ( z )  in the perfect leads correspond to that in figure 1 of [7]? 
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However, in these same studies of conductance using linear response theory [&lo], 
a relation has been derived between the one-particle Green functions and the cur- 
rent transmission amplitudes through a disordered region beginning with the work of 
Fisher and Lee [8] and also discussed in [9-111. Here we confirm that the Fisher-Lee 
relationship is satisfied for the special case of a delta function potential in a quasi-1D 
wire by explicit calculation of both the single-particle Green functions and the trans- 
mission amplitudes. ‘Two-probe’ Landauer formulae can therefore be used to calculate 
conductance when the transmission probabilities are obtained either by straightfor- 
wardly matching wavefunctions and their derivatives a t  the disordered regions or by 
the more complicated recursive evaluation of Dyson’s equation for the single-particle 
Green functions [12]. Detailed background and bibliography of previous work on the 
conductance of phase-coherent electron devices can be obtained from the citations 
in [l-111. 

2. Dyson’s equation in a quasi-ir, wire 

Consider again the quasi-one-dimensional wire having electrons confined along the y 
direction but free to move along the x direction shown in figure 1. The two-dimensional 
‘wire’ of this paper is a reasonable approximation to real physical systems where the 
confinement along z ,  usually normal to a semiconductor heterojunction interface, is 
much stronger than the ‘lateral’ confinement along y. Furthermore, if the additional 
confinement along z is taken into account the results for the transmission coefficients 
presented in section 4 do not change substantially, so it is adequate to work with the 
simpler two-dimensional ‘wire’. 

The equation of motion for the Green function G in the quasi-1D wire of figure 1 
is 

where the confinement potential V,(y) depends only on the transverse direction y and 
vd(x,y) is the potential of any defects or impurities in the wire. Throughout our 
discussion we assume propagation at  a constant energy E and do not write the energy 
argument in the Green functions. G(xy; x’y’) from (1) has the standard interpretation 
as being the ‘transmission amplitude’ that a unit impulse of probability amplitude 
originally deposited a t  position (x’,y’) will propagate to position (x’y). The one- 
dimensional Schrodinger equation along y including only the confinement potential 

gives rise to a set of normal modes x,,(y) and subband energies E,, where n is the 
subband index. In addition to their standard completeness property, the x,,(y) can 
be chosen real and obey the useful relation 
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Multiplying (1) on the left by x , ( y ) ,  on the right by x , ( y ) ,  and applying the useful 
equation (3), we obtain the equation of motion for the Green function in a QlD wire 
as 

The matrix elements of the defect potential in (4) are 

and the matrix elements of the Green function are 

G ( x b ;  z’c)  from (6) has the interpretation as being the ‘transmission amplitude’ that 
a unit impulse of probability amplitude originally deposited at  position 2’ in normal 
mode c will propagate to position x in normal mode b .  Also, the ‘free’ Green function 
in the absence of a defect potential obeys an equation of motion 

{ E  - E, - (-%s)} h2 d2 G o ( z a ; + ’ c )  = S(x - z’)S,, (7) 

so Go(xa; x’c) is diagonal in the mode indices a and c as Go(xa; x’c)  = G t ( x ;  x’)S,,. 

Dyson equation for a QlD wire as 
By standard manipulations of (4) and (7)’ repeatedly applying (3), we obtain the 

G ( z a ;  x’c) = G o ( z a ;  z’c) + / dx’’G0(xa; x”b)V,d(x”)G(x”d;z’c) .  
bd 

This Dyson equation can be given its usual interpretation of summing over the prob- 
ability amplitudes of all the possible scattering processes for a particle starting at  
position x’ in normal mode c arriving at  position x in normal mode a.  

3. Delta function scatterer 

We choose the scattering potentid v d ( 2 ,  y )  to be a delta function 

so that its matrix elements V,b(z) from ( 5 )  are 

The weight 7 can be either positive or negative. 
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Now let us iterate the Dyson equation (8) assuming initially for simplicity that 
only the lowest two normal modes are present. The infinite series for G(z1;dl)  is 

G(z1;z’l) = G!(z;z’) + G!(z;O)V,,G~(O; z’) 

+ G:(~;o)v,,G:(o; o)v,,G:(o;~’) 
+ G;(z; o)v,,~,O(o; o)v,,G;(o; 2’) 

+ G;(z; o)v,,G;(o; o)v,,G;(o; o)v,,G’:(o; 2’) 

+ G;(z; o)v,,G;(o; o)v,,G,~(o; o)v,,G;(o; 2’) 

+ G;(z; o)v,,G;(o; o)v,,c;(o; o)v,,G:(o; d) 
+ G;(z; o)v,,G,~(o; o)v,,G;(o; o)v,,G’:(o; d) + . (11) 

where = -&(Yi)Xb(Yi). Equation (11) can be regrouped as a power series 

G(z1;z’l) = G:(z;t’) +G~(c;O)VllG~(O;z’)[l  + (V,,G;(O;O)+ V,,G~(O;O))’ 

+ (V,,G:(O;O) + v22G;(o;0))2 

+ (V,,G;(O; 0) + V,,G~(O; 0 ) ) 3  + e .] (12) 

and summed as 

Equation (13) is valid for any energy of the incident electron. That is, equation (13) 
is valid when modes one and two are either propagating modes or evanescent modes. 
We later discuss the convergence of the power series (12) leading to (13), and show 
that the resulting equation (13) is better than the method used to obtain it. 

By analogy with our calculation of Gll from (13), the result for an arbitrary 
intrasubband Green function G(zu; d u )  including all the normal confinement modes 
is 

G(ta;t’u) = G:(t;t’) +GO,(t;O)V,,GO,(O;t’) 

Detailed discussion of one-dimensional results similar to (14) are given in [13-141. 
The expression for the intersubband Green function G ( m ;  t ’b)  again including all the 
normal confinement modes is 

~ ( t ~ ;  t ‘ b )  = +G:(~; o)v,,G;(o; d) 

Equations (14) and (15) are the exact solutions of the Dyson equation (8) with the 
scattering potential (9), and can be obtained by straightforward algebra after inserting 
(9) into (8). The iteration proceedure in ( l l ) ,  which fails if the Fermi energy is equal 
to a subband minimum but is useful for visualizing the possible scattering processes, 
is not necessary to solve (8). 
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Equations (14) and (15) can be evaluated by noting that the 'free' Green function 
for normal mode a is [13] 

(16) m exp(-n,lr - .II) E < E, GO,(z;d) = -- 
h2n, 

if mode a is an evanescent mode where 

and 

GO,*("; x') = Ti- exp fik,(z - x')) E > E, h2k, " (  
if mode a is a propagating mode where 

From (16) and (18) we see that G:(O, 0), which occurs repeatedly in the power se- 
ries (12) and corresponds diagrammatically to the particle repeatedly looping around 
the delta function [14], is simply proportional to the density of propagating or evanes- 
cent states for mode a. Thus, the series in the denominator of (14) and (15) of the 
form E, V,,G:(O; 0) should be interpreted as a Golden Rule amplitude involving the 
square root of the initial density of states, a matrix element connecting initial to final 
state, and the square root of the density of final states. Taking the square magnitude 
of this denominator will yield an infinite series of Golden-Rule-type scattering terms 
between all possible normal modes. The numerators of (14) and (15) can also be 
interpreted in this way. 

4. Transmission coefficients 

Let us evaluate the Green functions for the special case where x and x' are on opposite 
sides of the scatterer and hence x' < 0 < x. Since we are interested in transmission 
through the scatterer from left to right we consider only G+. Because we work with 
the time-independent form of the Green functions, implicitly assumed in all our calcu- 
lations is that a constant applied incident current is imposed on the scatterer from the 
left. If this were not true the scattering problem could not reach a time-independent 
solution. We must leave on the applied current long enough that evanescent modes 
can build up around the scatterer until a steady state is reached as described in the 
introduction and in [l]. 

To evaluate the intrasubband Green function from (14), we use the identity 

G:+(~;o)G:+(o; d) = G:+(o;o)G:+(z; d) 

G+(za; z'u) = t,,(E) G:+(x; 2'). 

(20) 

to rewrite (14) as 

(21) 
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Here t,,(E) is the current transmission amplitude through the defect 

given in [l]. In (22) Ce denotes a sum over all the evanescent modes, E‘ denotes a 
sum over the propagating modes, and mode a is assumed propagating. The ability to 
factor the Green function into a product of the free Green function multiplied by the 
transmission amplitude depends critically on the shape of the scatterer. Only for delta 
function scatterers is it possible to make the simple factorization in (21). In (21), the 
‘free’ Green function keeps track of the particle’s phase while t,,(E) gives the current 
transmission amplitude including any possible phase shifts. Factorization of the Green 
function as in (21) for the case of two delta function scatterers in one dimension 
(modelling a resonant tunneling problem) has been noted by Garcia-Calder6n [15]. 

The new physics of scattering in a confined geometry, discussed in detail for all 
the transmission coefficients in [l], can be briefly illustrated by considering a simple 
case of (22) where mode one is propagating and mode two is evanescent: 

At the minima of the second subband we have K, = 0 resulting in perfect transmission 
of the incident mode t , ,  = 1.  This ‘perfect transparency’ effect, first pointed out by 
Chu and Sorbello [2], is a consequence of evanescent modes building up near the 
scattering defect [l]. In addition, the numerator of (23) is zero when the incident 
electron energy lines up with the quasi-bound state which has split off from the second 
subband [l] resulting in perfect reflection, t , ,  = 0. Setting the real part of the Green 
function’s denominator in (21) to zero we recover the quasi-bound-state energy. 

Evaluating the intersubband Green function from (15) yields 

G+(za; t ’b)  = t ab (E)  (-ihz&) exp(+ik,z - ik,t’). 

Here t ,b(E) is the current transmission amplitude through the defect from the incident 
normal mode b on the left to the transmitted normal mode a on the right 

given in [l]. 
Equation (25) gives the transmission amplitudes t a b  = t b ,  for a # b .  But for the 

delta function scattering potential of (9), t , ,  = r , )  for a # b simply by wavefunction 
continuity at the scatterer [l]. Furthermore 1 + r,, = t , , ,  so (25) gives the reflection 
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amplitudes P,, if a = b .  These results can also be shown using the Green function 
approach of this paper. Therefore 

which holds for any two propagating normal modes a and b ,  should be considered the 
fundamental result of this paper. The two factors of (26) have a simple interpretation 
in terms of the Fermi Golden Rule as described in the previous section. Conversely, 
the intrasubband transmission from (22) appears to be a result of 'leftover' particles 
not deflected by the delta function, and can be obtained by applying (26) together 
with wavefunction continuity at the scatterer. 

The relationship obtained by Fisher and Lee [8] between the current transmission 
amplitudes and the Green functions for an arbitrary defect potential is 

tab(E) = - i h f i G t ( x a ;  x'b)exp(-ik,x + ikbx') 

where we again require that x' < 0 < x. We have inserted an extra h in their 
relationship which must be there on purely dimensional grounds. The current trans- 
mission amplitudes t a b  through the delta function potential were explicitly calculated 
in [l]. In this paper we have calculated all the Green functions G(xa;x'b) through 
the delta function defect. Both the intrasubband Green functions from (21) and the 
intersubband Green functions from (24) clearly obey the relation in (27) (up to an 
unimportant phase factor of -1). Alternately, had we not previously calculated the 
current transmission amplitudes using another method, we could have used the cal- 
culation in section 3 and (27) to  obtain them. Therefore, we can also regard the 
transmission coefficients t , ,  from (22) and t a b  from (25) as being obtained by solving 
the Dyson equation (8) and applying the Fisher-Lee relation (27). 

The current transmission coefficients Tab necessary to  calculate the conductance 
through a defect we may now obtain as 

Tab = t,btzb = VaVblfiG+(2U;2'b)12. (28) 

The-two probe Landauer conductance can then be written as 
- 

which is similar to  the expression in [a]. Relation (27) of Fisher and Lee for the 
transmission coefficients, inserted into the two-probe Landauer conductance formula, 
gives the expression for the conductance in terms of Green functions as in (29). 

The two-probe conductance versus Fermi energy from (29) for both a repulsive 
delta potential (full curve) having y = 7 feV cm2 and an attractive delta potential 
(chain curve) with y = -7 feV cm2 are shown in figure 2. Figure 2 assumes an 
infinite square well confinement of 30 nm width and an electron mass of 0.067 times 
the free electron mass appropriate for GaAs heterojunctions. Conductance through 
the repulsive potential (full curve) is lower than its ballistic value of n times 2e2/h 
(where n is the subband index) due to increased reflection immediately above the 
bottom of the nth subband. This increased reflection rounds the shoulders of the 
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quantised conductance steps. Immediately below the minima of the nth subband 
the conductance rises to  its ballistic value of (n - 1) times 2 e 2 / h  as a result of the 
‘perfect transparency’ effect described in this section. For the two-probe conductance 
through an attractive defect (chain curve), a single quasi-bound state splits off from 
each quasi-one-dimensional subband and is visible as the extra pronounced dips in 
the conductance. The quasi-bound state associated with the nth subband appears 
when the Fermi energy lies in the (n - 1)th subband, resulting in increased reflection 
and a correspondingly lower conductance near the quasi-bound-state energy. The 
‘perfect transparency’ effect is also present when the scatterer is attractive. We have 
investigated the conductance through a delta function scatterer in a wire in detail 
in [l]. 

5. Conclusions 

The scattering properties of electrons in a confined geometry are qualitatively different 
from the usual case of scattering in open geometries due to  the building up and storage 
of electrons in evanescent waves near the scattering defect. To illustrate these prop- 
erties, we solved Dyson’s equation for the single-electron Green function describing 
electrons scattering from a delta function defect in a quasi-one-dimensional wire. We 
then used Fisher and Lee’s relationship between the single-electron Green functions 
and the current transmission amplitudes to obtain the current transmission coeffi- 
cients of electrons through a delta function defect in the Q1D wire. The transmission 
coefficients so obtained agree with those found by simply matching wavefunctions and 
their derivatives at the defect [l]. For the delta function scatterer, all normal modes 
completely ‘decouple’ at a new subband minimum resulting in perfect transmission 
despite the presence of a scatterer. If the delta function scatterer is attractive, a sin- 
gle quasi-bound state splits off from each confinement subband and causes increased 
reflection if the Fermi energy is near the quasi-bound state. 
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